Politecnico di Milano
6/11/2014

Numerical Methods for Large Scale
Non-Smooth Multibody Problems

Ing. Alessandro Tasora

Dipartimento di Ingegneria Industriale
Universita di Parma, Italy

tasora@ied.unipr.it
http://ied.unipr.it/tasora

Let us go on and win glory for ourselves, or yiélkd others

Homer, lliad

Numerical Methods for Large-Scale Multibody Problems
A.Tasora, Dipartimento di Ingegneria Industriale, Universita di Parma, Italy

Background

& THE UNIVERSITY OF

B2 CHICAGO

Joint work in the multibody field with

- M.Anitescu (ARGONNE National Labs, Chicago Universit y) °

- D.Negrut & al. (University of Wisconsin — Madison) Arggme

- J.Kleinert & al. (Fraunhofer ITWM, Germany) % F|'a|,|nhofeu:mm

- F.Pulvirenti & al. (Ferrari Auto, Italy) - m
- NVidia Corporation (USA) S} @

- AJain (NASA — JPL) e NVIDIA.

- S.Negrini & al. (Politecnico di Milano, Italy)

- ENSAM Labs (France) m

- Realsoft OY (Finland) l‘“ﬁifngnsas

- Cineca supercomputing (Italy) SCA

SuperComputing Applications and Innovation

Numerical Methods for Large-Scale Multibody Problems L &

A.Tasora, Dipartimento di Ingegneria Industriale, Universita di Parma, Italy /’

Structure of this lecture

Sections

* Concepts and applications

» Coordinate transformations

e Dynamics: a theoretical background

» Atypical direct solver for classical MB problems

e Iterative method for nonsmooth dynamics

» Software implementation

e C++ implementation of the HyperOCTANT solver in Chr ~ ono::Engine
e Examples

e Future challenges

Numerical Methods for Large-Scale Multibody Problems ~—— Pollfeciiico di Milgrio, November 2014

A.Tasora, Dipartimento di Ingegneria Industriale, Universita di Parma, Italy =
e . slide .

Section

Multibody simulation:
concepts and applications

Numerical Methods for Large-Scale Multibody Problems

Introduction

Multibody methods:

* Usually general-purpose: they can
model many types of problems

* Solve motion equations automatically

® Should support an arbitrary number of
parts, forces, geometries, constraints...

* Most often use numerical methods to
compute simulations

* Often integrated in CAD tools, with GUI
(graphical user interfaces)

Numerical Methods for Large-Scale Multibody Problems

* Statics

* Kinematics
* direct
® inverse

e Dynamics
* Large motions
® Linearized motion

e Modal analysis , with eigenvectors/eigenvalues
e Sensitivity analysis
e Local optimization
e Global optimization and topological synthesis

Numerical Methods for Large-Scale Multibody Problems L &

A.Tas , Dipartimento di Ingegneria Industriale, Universita di Parma, Italy /’

Pollfeciiico di Milgrio, November 2014

Applications of muItibody_ metheds /"

Robotics
¢ Direct kinematics
® Inverse kinematics
* Dynamics
* Optimization of robot design

Automotive
* Optimization of car suspensions
® Train dynamics (c) Alessandro Tasora
* Handling simulation
* Comfort

* Accident reconstruction

=

Numerical Methods for Large-Scale Multibody Problems

A.Tasora, Dipartimento di Ingegneria Industriale, Universita di Parma, Italy /

Pollfeciiico di Milgrio, November 2014

Applications of muItibody_ metheds /"

Crash tests
* Accident reconstruction

* Optimization of safety devices
.

Aerospace engineering
* Setellite deployment
* Balistics
* Flight simulation
* Landing probes

* Simulation of complex mechanisms
(helicopter rotors, landing gears, etc.)

Automation
* Automated plant simulation
* Optimal selection of servo motors

* Mixed simulations (pneumatics+mechanics, etc.)
in mechatronics

* Part feeders
* Size segregation machines
* Conveyor belts

(©) Alessandro Tasora

Generic applied mechanics

* Power trains, gears,
* Intermitting devices
* Cams, followers

® Clock mechanisms

(©) Alessandro Tasora

Articulated mechanism: synthesis
* Analytic synthesis
* Genetic synthesis
* Optimizations
* Topologic synthesis

Virtual reality
* Environment simulation
* Training
® Vehicle simulation

Biomechanics
* Simulation of new prosthetic devices
* Sport biomechanics
* Motion capture & gait analysis

Civil engineering
* Rocking block dynamics
® Seismic simulations
* Masonry stability

CAD-CAM-CAE tools
* Simulations, optimizations
* Interactive manipulation of parts in 3D views
* Physical-oriented design

Video games
* Real-time dymamical simulation

NOTE: 48’000 million of dollars of revenues in videogames,
A relevant market for physical simulation software.

Special FX. movies
* Dynamical simulations will soon replace most
special effects in films
* Skeletal animation, physical-based animation
* Fake ragdolls, herds, masses

Nuclear engineering
* Simulation of PBR reactors

* Simulation of tele-operating manipulators
.

Tech demo of multibody simulation within a videogame engine (CryTek CryEngine)

Example: dynamical simulation of an engine

The simulation of massive scenarios
with thousands / millions of bodies in
contact is stillan OPEN PROBLEM

Granular flows

Rock / soil dynamics

Packaging

Size segregation

Powder mechanics

Off-road ground/tyre interaction

» Etc.

Example: size segregation device: about 2000 interacting objects
simulated with our Chrono::Engine software

The non-smooth dynamics of massive scenarios (millio ns of DOFs) with
frictional contact is stillan ~ OPEN PROBLEM

Granular flows
Soil / sand dynamics

Powder mechanics Example of benchmark of our
Chrono::Engine software (H.Mazhar 2012)

Example: bidisperse granular flow
in the PBR nuclear reactor

Today simulation use regularization
stiff problem, not rigid objects ..

GOAL: FIND A NUMERICAL METHOD
WHICH CAN SIMULATE MILLIONS
OF RIGID BODIES WITH CONTACTS
AND FRICTION

Collaboration with Argonne National
Laboratories

a new method (A.Tasora,M.Anitescu)

Collaboration with Dan Negrut
(University of Wisconsin-Madison)

Reactor picture: Bazant et al. (MIT and Sandia laboratories).

10

Section

Coordinate transformations

We assume bodies to be rigid

Each body has a set of three axis that form a

Motion: 3D translation + 3D rotation

moving reference

absolute

11

How are body’s points transformed?

Affine linear transformation:

The [A] matrix is the rotation matrix (3x3in 3D, 2x2 in 2D)

Example (in 2D):

e [A]is built with X,Y versors columns : [A]=[X|Y]
* [A] is hemisymmetric
¢ [A] does not change distance between points

* Not as easy for 3D, though...

12

The [A] rotation matrix in 3D

The [A] matrix is orthogonal:

Simple rotation, no translation:

[A] 1= [A] T (does not change distance between points)

“Direct” transformation:

{or} =[%A] {*r} +{d}

“Inverse” transformation:

{try =[%AI* ({} -{°})
=[%A] T ({°r} -{°})
=[%Al (°r} -{%}

13

Each body should have 3 (translation ~ d) + 3x3=9 (rotation [%A])

coordinates, that is 12 scalars.

Some would be redundant...

Is it possible to make [%A] dependant
on only three coordinates?

[®A(a,b.g] =f(a,b,g

Oy

Make [%,A] dependant on three angles?...

Different options, depending on the sequence of 3 r

Ex:

otations!

14

Ex: make [%A] dependant on three ‘Eulero’ angles:

But also:

e ‘Cardano’ angles
e ‘HPB’ angles

e ‘XYZ angles,

. etc..

See also ‘Rodriguez parameters’

Example: sequence X-Y-Z

Example: sequence Y-Z-X

NOTE: viceversa, how to compute z, x, Afrom [A] ?
z=asin (A, ,)

h=asin (-A, 3/ cos@))

X=acos f,,/ cosg)) singularity for z=p/2 +np

11" (Same for all sets of 3 angles!)

15

Angular velocity

G0

Angular velocity, velocity

16

Velocity of a point on a moving frame

Acceleration of a point on a moving frame

17

Problem: recovering 3 angles from matrix is not alw ays possible (a
singularity might happen...)

A solution is to use quaternions (4 coordinates for rotation)

Quaternion algebra makes kinematics easier.

Ex. The gimbal lock problem
in Apollo 11 IMUs: only 3 gimbals
were not sufficient

18

* Hypercomplex 4-dimensional numbers
e Associative divisional algebra

Why quaternions for the rotations?

¢ No singularities

e Compact formalisms

e sin() cos() never used

+ Easier analytic constraint jacobians [C,]

Quaternions have been an unmixed evil to thosehakie touched them in any way.

Lord Kelvin, 1892

19

Sum:

Product:

Conjugate:

Inverse:

20

Matricial expression for product:

Unimodular quaternions can be used to express 3D ro

Inverse rotation:

tations:

21

That is like rotation with matrix ~ [A] :

Matrix [A] as a function of a quaternion :

Viceversa:

(no singularity!)

22

Quaternion function of angle and axis

Useful conversions

23

Section

Dynamics: formulations

This section describes a typical direct solver

e Can be used for classical ‘smooth’ MB problems...

e .. butitis unfit to ‘large non-smooth’ problems (to this purpose, we will
introduce our new iterative solver in the next sect ion)

« Anyway: useful for didactical purposes, to introduc e some basic
concepts (quaternions, states, etc.)

24

Simple taxonomy of approaches to multibody dynamics:

» Depending on set of state coordinates:
* Few reduced coordinates / recursive coordinates
® Many ‘natural’ coordinates (plus Lagrangian multipliers)

* Depending on methods to compute unknowns at each dt
* Direct methods
® [terative methods

* Depending on handling of non-smooth dynamics
® Regularization (cast to smooth dynamics)
* DVI Differential Variational Inequalities / MDI Measure Differential Inclusions

» Depending on integration schemes
* Implicit, or explicit

¢ Differential-Algebraic (DAE), or Ordinary Differential (ODE) with projection/stabilization

 Etc.

A) “Reduced coordinates” method vs. “Lagrangian multipliers”

Few coordinates (‘joint coordinates or ‘recursive’ coordinates)

Very fast simulation

O(n) complexity order

Requires topological analysis -

Big troubles with closed chains!!! -

25

B) “Natural coordinates” method vs. “reduced coordinates”

Many variables (6 X ny,q, + constraint multipliers)

Closed chains: no problem

Topology may change in run time

DAE integration, or constr.stabilization -

Trivial method: O(n %) complexity order ==

Slow simulation speed -

Note: closed kinematic chains happens very frequently (a big trouble for reduced
coordinate methods!)

Example:

26

Example of model — using lagrangian ‘natural coordinates’ approach

Some constraint types in our Chrono::Engine software

27

Example of model with many types of constraint (rhe onomic scleronomic, etc.)

Simulation of a 6-legs robot with 42 joints, 38 rigid bodies, 12 motors, 6 contacts (A.Tasora 2007)

We are interested in the integral of motion q(t) q
starting from boundary conditions 0,(0)

0
Most often, the integrals must be approximated by numerical integration

How to develop the equations of motion?

Example: use
. Lagrange formulation, or

. Hamilton formulation

28

Introduce vector of independent generalized coordinates (for translation / rotation / etc.

e Lagrange formulation:

e Hamilton formulation:

. Other various variational principles:

Gauss least constraint principle
Jourdain principle

D'Alambert principle
Euler-Lagrange equations

etc.

For the special case of rigid bodies only, a classical mechanics formulation is:

¢ Newton-Euler equations:

Masses and Accel.

Applied forces

Applied torques
Gyroscopic term

inertia tensors

These can be obtained by developing, for instance, the Lagrange equations.
Note that the unknowns are the linear accelerations and the angular accelerations:

The gyroscopic term is null if w is parallel to one of the three principal axes of [J] tensor
(ie. w aligned to one of the eigenvectors of [J])

External forces applied to center of mass, to get this simple formulation

29

Lagrangian formulation, with constraints

This is a Differential-Algebraic-Equation problem (DAE)
Without constraint equations, it would be an Ordinary-Differential-Problem (ODE)

C(X,t) is a vector of (nonlinear) equations, satisfied =0 if constraint is ‘closed’
Il is the vector of constraint reaction (reaction forces/torques)

Dinamics of a constrained system (only bilateral constraints, no unilaterals!):

Trick: froma DAE....

(Differential Algebraic Equations)

...to a simplier ODE

(Ordinary Differential Equations)

30

Structure of the linear systems:

Highly sparse (good!)

Symmetric structure (good!)

How to factorize and solve
efficiently this system?

Gauss method? - No decomposition
- Pivoting destroys symmetry!!!

LU

decomposition? - Pivoting destroys symmetry!!!

LLT Cholesky - Exploits symmetry BUT...
decomposition? - the matrix is not positive definite!!!
LDLT - Exploits symmetry

- works also with nonpositive definite metrices,

PN
decomposition® - ... troubles with [M] submatrices 4x4 rank-3 !!!

[AI=[L]D][L] T

31

Fix: project in & - W space to get rid of rank-deficient [M] submatrices:

Temporary change of coordinates:

Note...rememkger:

To keep symmetry, pre-multiply everything by [Tq]T :

More compact

Still symmetric

Still sparse

Well conditioned diag.pivoting
Inertia tensor as in Newton-Euler
Quaternions (not angles!) for [C]
..efficient LDLT decomposition !!!

32

From step to step, errors might accumulate in positions or speeds of constraints
(we transformed the DAE in ODE, so we satisfy constraints only in accelerations)

Example of constraint that accumulate violation in position:

Different approaches to solve the “constraint drift ing” :

* Solve DAE directly with a special method (ex. DASSL integrator)
* Numerically intensive
* May suffer ill-conditioning, exp. for small timesteps
* Requires precise initial consistent state!
* Other: RADAU, GEAR, etc.

* Use stabilization methods
* Example: Baumgarte stabilization
* Example: regularization & penalty functions
* Fast, but difficult to adjust, not very precise, may cause divergence.

* Use projection methods
* Example, see W.Blajer method
* Projections are like repeated ‘corrections’ of positions and speeds
* Project onto speed manifold each timestep — linear problem
* Project onto position manifold each timestep — nonlinear problem (iterate 1-3 times)
* Note that the position projection is like an ‘assembly’ operation.

Finds accelerations,
to integrate speeds
and positions

(re-map in
quaternions q”)

Correct constraint
position-violation

(re-map in
quaternions q)

Correct constraint
speed-violation

(re-map in
quaternions q’)

These matrices are the same!
(if C, does not change a lot, a single symbolic
factorization can suffice...)

hence, O(n) complexity for mechanisms without

Linked-list half-storage:

Custom list-based LDL T algorithm
Can withstand redundant constraints
Linear-time decomposition for acyclic systems!!!

closed chains!

34

Test: simulation of a Watt mechanism, with ray-traced rendering in Realsoft3D

Benchmark to test the efficiency of our sparse solv

er

35

Section

Iterative method for nonsmooth-dynamics

Examples of unilateral constraints:

36

e Unilateral constraints and friction : happen in many mechanisms

¢ Inequalities lead to a DVI (Differential Variational Inclusion problem

)

«Current solvers: slow, low efficiency, not robust

*Need of solvers for systems with thousands or million of constraints

37

Develop new ITERATIVE methods aimed at multibody problems
with an high number of constraints and parts

.. if possible, in real time..
..of Pclass, O(n) ..

.. and parallel !

38

Multi rigid body systems, ng.d.l

Only bilateral
constraints:

DAE / ODE:

Solve for unknown accelerations at each
time step using linear systems

O(Nn®) computational complexity [Gauss]

O(Nn) computational complexity with recent

methods [A.Tasora, D.Baraff]

.. Adding also non-

smooth constraints
(es.friction):

ODE or DAE + regularization methods —_—
(trick: approximate with stiff force fields)

L> Stiffness: too small time steps!

L} ODE or DAE + “stop-and-restart” methods $
L> Impracticable for complex systems!

DVI Differential Variational Inequalitied
MDI Measure Differential Inclusions
DCP Differential-Complementarity Problems

L> Handle large steps, multiple discontinuities
L> Embed complementarity problem, each step
L> How to solve DVI problems?

39

A mathematician is a device for turning coffee iti@orems.

Paul Erds

Alternative formulation:

Definition of Variational Inequality (VI):

* for continuous
* with closed and convex

(see Kinderleher and Stampacchia ,1980)

40

Differential Variational Inequality (DVI)

where is the set of solutions to the VI

Most differential problems can be posed as equalities like:

dxdt = f(x,9) ODE, DAE , ok
But some problems require inequalities or inclusions like
dxdtl f(x,1) Differential Inclusion! (DI)

Example : a flywheel with brake torque and applied torque (looks simple?!) (II\
M

J dw/dt = Mf(W) +Me(t) where Mf:-Mf max if w>0 M;
and MEM; oy it W<0 N I
* All ODE integrator would never stop in w=0!
It would just ripple about w=0.. tw
« Reducing Dt in ODE integrator may reduce the ripple, 7/7\\7#/\4\74\7%
. . Vv N\
But what if low J ? Divergence!
¢ Regularization methods? A) Numerical stiffness! My
B) Approximation! C) The brake would never stick! ... \ w
———

* Also, if ever w=0, which M; ? Not computable!

41

Most differential problems can be posed as equalities like:

dxdt = f(x,9) ODE, DAE , ok
But some problems require inequalities or inclusions like
dxdtl f(x,1) Differential inclusion! (DI)

Example : a flywheel with brake torque and applied torque (simple?!)
Improved model!
J dw/dt = My(1) +M(t) where M=-M; o for w>0

and Mf:Mf max_for w<0
and -Mf maxs Mf< Mf max for w=0

A set-valued

=
i
— 1T T

e This could handle also w=0 case, ex. brake sticking MULTIFUNCTION!

« But now we have a differential inclusion dufdtT f (mt) . How to solve it ?

My
BN NN
M!
%W

Differential inclusions: not an ODE anymore...
We need some new concepts from convex algebra ...

» Filippov Differential Inclusions (DI) continuous X(t) solution of ODE

discontinuous RHS f() if

. is a vector-valued multifunction
e 1l o(N) is the Lebesgue measure on set N
e f() upper semi-continuous

+ f() measurable in t mild conditions...
« f () closed, bounded, convex

Difficult set-valued problem

Can solve Coulomb friction, but fails the Painlevé paradox (1895)..

42

What if the velocity must have discontinuities ? dvdti f(v,})

® _because of impulses,
* .because of impacts,
* _because of friction effects such as in Painlevé paradox

The RHS has ‘peaks’ (impulses),
The velocity has ‘jumps’ distribution, generalized function

® Which is the meaning of the derivative of discontinuous velocity?
* Integrals in the Lebesgue-Stieltjes sense — not Riemann

® RHS not Lipschitz continuous: Picard-Lindel6f theorem does not apply.. What about
existence and uniqueness of solution?

Measure Differential Inclusion (MDI): strong solution [Moreau]

For singular decomposition of Borel measure

For MB dynamics: weak solutionto MDI/ DVI [D.E.Stewart]

if with Borel measure m(=D) and
continuous ~ with compact support

* K () must be closed, convex, pointed
« discontinuous /mhas bounded variation 9 m

Encompasses Dirac functions and vector distributions impulsive forces OK.

Solves Painlevé paradoxes

Solution in terms of speed variations & impulses — not accelerations & forces

43

Mechanical system with
* Set of bilateral joints
* Set of point contacts

* External forces

Bilateral constraint
equations

Contact forces Vis

We get a differential problem with equilibrium cons traints (DPEC), a Differential
Complementarity Problem (DCP), also a Differential Variational Inequality (DVI)

Bilateral constraint
equations

Contact constraint
equations

The tricky part: the
Coulomb friction

44

After time-step discretization, as a measure differ ential inclusion, it translates into a
Nonlinear Complementarity Problem (NCP), also a Variational Inequality (VI):

L) o 0 U

Speeds
D Forces
Stabilization N
terms Bilateral constraint
equations

Contact constraint
equations

O\ COMPLEMENTARITY!

Coulomb 3D friction
model

Reaction
impulses

The NCP is a generalization of Linear Complementari ty Problems (LCP)

Why not using off-the-shelf ~ LCP solvers ?

* LCP require finitely-generated
approximations of NL convex
sets, see the friction cones:

We want NO polyhedral
approximations

e Y
Need for a custom iterative non-
| linear complementarity solver

Example (D.Stewart): Polyhedral approximation of friction cones, to feed

45

Why not using off-the-shelf LCP SOIvers (for Linear Complementarity)?

* Most LCP solvers (Lemke, Dantzig) are based on exac __t simplex methods,

ac__ 1

with NP-hard complexity class. Risk of combinatorial explosion !

* Simplex methods do not support threshold ‘premature ' termination

We prefer an approximate O(n)
iterative method

Example: what happens when stopping too early
the simplex method

A madification (relaxation, to get a convex problem):

For small hand/or small speeds, almost no differences from the Coulomb theory.

Also, convergence proved as in the original scheme.

[see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics”]

46

Aiming at a more compact formulation:

To get the convex Cone Complementarity Problem (

Then:

CCP), also define:

Thisis a CCP,
CONE COMPLEMENTARITY
PROBLEM

becomes..

47

Here we introduced the convex cone

..and its polar cone:

CCP:

is i-th friction cone

is R

How to practically solve the Cone Complementarity Problem

Our method: use a fixed-point iteration

?

with:

KT=
. matrices:

. ..and a non-extensive orthogonal projection
operator onto feasible set

48

ASSUMPTIONS

Always satisfied in
multibody systems

Free choiche of
the B" matrix

Use factor and the
B" matrix to adjust this

Under the above assumptions, we
can prove THEOREMS about convergence .

The method produces a bounded sequence
with an unique accumulation point

The projection operator must be non-extensive ,
i.e. lipschitzian with |f(a)-f(b)|| |fa—bl|

» For each frictional contact constraint:

For each bilateral constraint, simply dq nothing.

The complete operator :

Development of an efficient algorithm

At each I'-th iteration:

for fixed point iteration:

with K=

Loop on all ih
constraints

If i-th is a contact constraint:

Jacobian for body A Jacobian for body B

8 -8

If i-th is a scalar bilateral constraint

Jacobian for body A Jacobian for body B

= LIITITT1 ! CIITTTT]

- O

Even better, in incremental form:

Loop on all ih
constraints

We know that:

..S0 we rewrite:

Avoid these loops, otherwise
each iteration would be O(n 2)

Only one of these multiplier
changes at each iteration...

Loop on all i-h
constraints

This ‘incremental’ form
has O(n) complexity!!!

50

Development of an efficient algorithm for fixed point iteration:

¢ avoid temporary data, exploit sparsity. Never compute explicitly the N matrix!

* implemented in incremental form. Compute only deltas of multipliers.
* O(n) space requirements
* supports premature termination

« for real-time purposes: O(n) time

Pseudocode:

51

Mixing bilateral and unilateral constraints

. Bilaterals: spherical joints
between the balls

. Unilaterals: collisions +
min/max rotation limits
for balls

. No fritcion

52

53

The projected fixed point method has slow convergence !

New methods under development

* SPG modified Spectral Projected Gradient P-SPG-FB
e APGD Accelerated Projected Gradient Descend

e Interior point?

* FAS Multigrid?

54

e Currently most solvers for the VI / CCP problem are based on
fixed point iterations:
* Projected Gauss-Jacobi,
* Projected Gauss-Seidell / SOR, presented in the previous slides
® Mirtich ‘microimpulses’ method,
These are robust, but their convergence is slow!

« On the other side, Krylov stationary methods have f _ast
convergence, but are limited to linear problems (no contacts!)
* Conjugate Gradient
* MINRES
* GMRES
* FEtc.

WE NEED THE BENEFITS OF BOTH, without their shortcomings!

In case of convexified problem (i.e. ‘associative f lows’ as our CCP)
one can express the VI as a constrained quadraticp rogram:

One can use the Spectral Projected Gradient method for solving it!

55

Our modified P-SPG-FB algorithm

* Supports premature termination with
fall-back strategy (FB)

» Uses alternating step sizes

» Uses diagonal preconditioning (with
isothropic cone scaling)

» Performs projection onto Lorentz cones

Our modified P-SPG-FB algorithm

* Supports premature termination with
fall-back strategy (FB)

» Uses alternating step sizes

» Uses diagonal preconditioning (with
isothropic cone scaling)

» Performs projection onto Lorentz cones

56

Comparison with other Krylov solvers for simple lin
(only bilateral constraints):

ear case

Comparison with other solvers for complemetarity pr oblems

(only unilateral contacts, no friction)

S7

Comparison with other solvers for complemetarity pr
(unilateral contacts AND friction - few solvers can handle it)

oblems

Effect of preconditioning:

58

Tire on a granular soil, with CHRONO::ENGINE

In collaboration with F.Braghin, Politecnico di Milano.

59

Rigid contact: Compliant contact:

Nonlinear, with cohesion: Rigid, with plastic cohesion

Es:
- Lennard-Jones
- Johnson-Kendall-Roberts

Compliant, plastic cohesion Compliant, plastic cohesion and compression

In general, DVI are useful for various reasons that are diffult to handle in DAE:
» very stiff or rigid contacts set valued force laws \
» plasticity in contacts yield surfaces VI

e friction set valued force laws VI

60

Contact forces

Inclusion in vyield surface :

Prandtl-Reuss-like assumption

Associated flow assumption:

The increment to the plastic flow
is orthogonal to the yield surface

on displacements y

Elasto-plastic model:

With time discretization:

61

Define:

Posing:

One finally gets the VI:

That can be written also as the ‘classical’ VI:

62

Note: the VI, for associated plastic flow, is also a convex minimization problem

By introducing also viscous damping , one gets the model

Again one obtains a VI, this time with:

63

With Raleygh damping simplification

Obtaining:

NOTE
the E term works as a Tykhonov regularization
of the Schur complement

4)
Aaoat

64

Granular flows (shear test)

65

Examples

Benchmark of our software Chrono::Engine

(animation by H.Mazhar ,2013)

Examples

Benchmark of our software Chrono::Engine

66

Section

Software implementation

Classification of MB software

By license:
» Commercial
¢ Open source

By architecture:

« Stand-alone application with user interface (GUI)
e Only solver (batch processing)

e As a plug-in for 3rd party CAD

¢ As middleware (library)

By purpose:

e General purpose

* Vertical (application-oriented)
* Real-time

67

“This manual says what our product actually does,
no matter what the salesman may have told youdastdo

In a graphic board manual, 1985

Famous commercial software (with GUI):

« ADAMS
* Pioneer of MB, tested and reliable
* Poweful analysis functions
® Targeted at ‘serious’ engineering stuff
® Customizable
* Many solvers (but unfit for contacts..)

® Available modules for powertrains
and vehicle dynamics (Adams/Driveline,
Adams/Car, Adams/SmartDriver, FEV,
etc.)

® Pre-post processing GUI not always
easy to use...

68

Famous commercial software (with GUI):

¢ VisualNastran4D
® Simple to use
® Cheap (but discontinued!)
* Good GUI interface
* Fast simulation

Famous commercial software (with GUI):

e LMS Virtual.Lab Motion (DADS)
* For engineering tasks

* It was a competitor of ADAMS (Prof. Haug)
* Available modules for powertrains and vehicle dynamics

® Sunspension templates, etc.
* Interfaced with CATIA

69

Famous commercial software (with GUI):

 SIMPACK

Poweful features

Based on fast recursive formulation

Quickly growing in automotive field

De-facto standard in train engineering

Available modules for powertrains and vehicle dynamics

Famous commercial software (with GUI):

* RECURDYN

Based on fast recursive formulation
Developed in Korea,
Recent product

Lot of modules for automotive
applications

In NX CAD as ‘NX Motion’

70

Famous commercial software (with GUI*):

e SimMechanics (Matlab)
* Based on Matlab + Simulink
* No GUI for designing 3D parts
¢ Import from CAD (ProE, SolidWorks, ..)
¢ Slow simulation...
* Expandable via programming language
* Interfaces to SimDriveline
* Export C code to RealTime Workshop

Special purpose commercial software — ex: vehicles

* VI-GRADE suite (based on Adams)

® VI-Sportcar

® VI-Train

* VI-Motorcycle

* etc...

71

Special purpose commercial software — ex: vehicles

* VI-GRADE suite (based on Adams)

* VI-CarRealTime

Special purpose commercial software — ex: vehicles

* VI-GRADE FEV VIRTUAL ENGINE

® Crank train module

* Timing Drive module

® Valve train module

® Gear drive module

® Piston dynamics module

72

Special purpose commercial software — ex: vehicles

* AVL EXCITE

Commercial middleware & APIs:

¢ HAVOK
* Widespread
* For videogames mostly
* Very fast & reliable
¢ Implemented on GPU boards

* PhysX (ex Ageia, ex Novodex, ex Meqgon)
* Powerful SDK
® Used also for engineering
® Competing with HAVOK — bought by NVIDIA

e PIXELUX
* Digital molecular matter (DMM)
* Realtime FEM
* Biased toward efficiency

73

Open source / opaque source free middleware:

« ODE
* OpenSource
® Large user base
* Not optimized, dirty API

« NEWTON
« TOKAMAK
* All are very fast
® Opaque source, all are free for non-commercial purposes

« CHRONO::ENGINE
® Our project...
* Workin progress..

e BULLET
® Specialized in collision detection — biased toward efficiency

¢ MBDYN
* Developed at Politecnico — biased toward precision

Our Chrono::Engine middleware project:

* Middleware : can be used by third parties
» Efficient and fast, real-time if possible

e Expandable via C++ class inheritance

* Robustand reliable

* Embeddable in VR applications

e Cross-platform

e State-of-the-art collision-detection

74

Part of ProjectChrono : very recent initiative, more to come...

Features of the Chrono::Engine middleware (1)

Core features

* Optimized custom classes for vectors, quaternions, matrices.

* Optimized custom classes for coordinate systems and coordinate transformations

« All operations on points/ speeds/ accelerations are based on quaternion algebra

« Custom sparse matrix class

e Linear algebra functions for LU decomposition, Choleski, Von Kauffmann, LDLt -SVD etc.

» Custom redirectable stream classes, featuring platform independent archiving.

* Special archive engine, with persistent/transient serialization, versioning and deep pointers storage.

* Nonintrusive memory debugger, to track memory leaks.
¢ Intrusive and non-intrusive smart pointers.

* High resolution timer, platform independent.

75

Features of the Chrono::Engine middleware (2)

Physical modeling

* Rigid bodies, markers, forces, torques

* Bodies can be activated/deactivated, and can selectively partecipate to collision detection.

* Exact Coloumb friction model, for precise stick-slip of bodies.

* Parts can collide and rebounce, depending on restitution coefficients.

* Springs and dampers, even with non-linear features

* Wide set of joints (spherical, revolute joint, prismatic, universal joint, glyph, etc.)
« Constraints to impose trajectories, or to force motion on splines, curves, surfaces, etc.
e Constraints can have limits (ex. elbow) and can be motorized

» Custom constraint for linear motors.

e Custom constraint for pneumatic cylinders.

e Custom constraint for motors, with reducers, learning mode, etc.

» Constraints can be activated and deactivated.

* Brakes and clutches, with precise stick-slip effect. , etc.

e Conveyors, 1-DOF elements, driveline simulation, etc.

Features of the Chrono::Engine middleware (3)
Other features

* Fast collision detection between compound shapes

* Handling of redundant and ill-posed constraints.

* Integration with ‘measure differential inclusions’ approach.

* Inverse kinematics and interactive manipulation.

» Classes for genetic & local optimization.

» Classes for co-simulation

» Classes for interfacing foreign geometric data (NURBS, splines).
e The multibody engine can be scripted via Javascript and Python
* 'Probes' and ‘controls' for man-in-the-loop simulations.

* Makefile system based on CMake, compatible with MS 'nmake’ and GNU 'make'.
* Wide set of examples and demos,

» Powertrain 1D simulation

* Multithreading and GPU support, etc.

76

Workflow:

Modules:

77

Rigid bodies

Rigid bodies

78

Joints:

Some joint types in our Chrono::Engine software

79

Complex object hierarchy:
smart shared pointers are used.

Example of simulation with our Chrono::Engine technology

The GRANIT parallel-kinematics robot (Tasora, Righettini, Chatterton, 2007)

80

Example of Chrono::Engine C++ code

I/ 1- Create a ChronoENGINE physical system: all bod
/I will be handled by this ChSystem object.
ChSystem my_system ;

1l 2- Create the rigid bodies of the slider-crank me
/I (acrank, arod, a truss), maybe setting posit
/I their center of mass (COG) etc.

/I ..the truss
ChSharedBodyPtr my_body_A (new ChBody);
my_system.AddBody(my_body_A);

my_body_A->SetBodyFixed(true); /l truss does not move!

/I ..the crank

ChSharedBodyPtr my_body_B (new ChBody);
my_system.AddBody(my_body_B);
my_body_B->SetPos(ChVector<>(1,0,0));

/I ..the rod

ChSharedBodyPtr my_body_C(new ChBody);
my_system.AddBody(my_body_C);
my_body_C->SetPos(ChVector<>(4,0,0));

/I position of COG of crank

/I position of COG of rod

my_body/B my_body_C

1.)

] A

ies and constraints

chanical system
ion/mass/inertias of

Example of Chrono::Engine C++ code

13- Create constraints: the mechanical joints betw een the

/I rigid bodies.

/I .. arevolute joint between crank and rod

ChSharedPtr<ChLinkLockRevolute> my_link_BC (new ChLinkLockRevolute);

my_link_BC->Initialize(my_body_B, my_body_C, ChCoor
my_system.AddLink(my_link_BC);

/1 .. a slider joint between rod and truss

ChSharedPtr<ChLinkLockPointLine> my_link_CA (new ChLinkLockPointLine);
dsys<>(ChVector<>(6,0,0)));

my_link_CA->Initialize(my_body_C, my_body_A, ChCoor
my_system.AddLink(my_link_CA);

/I .. an engine between crank and truss

ChSharedPtr<ChLinkEngine> my_link_AB (new ChLinkEngine);
dsys<>(ChVector<>(0,0,0)));
ED);

1 speed w=3.145 rad/sec

my_link_AB->Initialize(my_body_A, my_body_B, ChCoor

my_link_AB->Set_eng_mode(ChLinkEngine::ENG_MODE_SPE

my_link_AB->Get_spe_funct()->Set_yconst(CH_C_PI);
my_system.AddLink(my_link_AB);

dsys<>(ChVector<>(2,0,0)));

my_link_BC

(.2.)

my_link_CA

“ my_link_AB

81

Example of Chrono::Engine C++ code (--3)

/I 4- THE SOFT-REAL-TIME CYCLE, SHOWING THE SIMULATI ON

/1. This will help choosing an integration step w hich matches the
/I real-time step of the simulation..
ChRealtimeStepTimer m_realtime_timer;

while(device->run()) 1l cycle on simulation steps
{
/I Redraw items (lines, circles, etc.) in
/I the 3D screen, for each simulation step
[
HERE DRAW THINGS ON THE SCREEN; FOR EXAMPLE:

/I'.. draw the rod (from joint BC to joint CA)

ChlirrTools::drawSegment(driver,
my_link_BC->GetMarker1()->GetAbsCoord().pos,
my_link_CA->GetMarker1()->GetAbsCoord().pos,
video::SColor(255, 0,255,0));

[

/I HERE CHRONO INTEGRATION IS PERFORMED!!!:
my_system.StepDynamics(m_realtime_timer.SuggestSim

Demo_crank.exe

Demo_fourbar.exe
ulationStep(0.02));

) Demo_pendulum.exe

Demo_gears.exe

Our Chrono::SolidWorks add-in for CAD software:

* Expands SolidWorks
with new buttons, tools

* Export a mechanism
into a .PY file

* Load the system in
a C++ simulator

82

Our Chrono::SolidWorks add-in:

Example — waste processing tool modeled with Chrono::Solidworks

83

The unit_COSIMULATION :

The unit_COSIMULATION :

84

The unit. PYTHON

* Python modules
for using \>

from Python

Chrono::Engine

* aPython parser
to use .py filesin
C++ programs

The unit. PYTHON

Example:

my_quat = chrono .ChQuaternionD(1,2,3,4)
my_gconjugate = ~my_quat

print (‘quat. conjugate =', my_gconjugate)

print (‘quat. dot product=', my_gconjugate ~ my_quat)

print (‘quat. product=", my_qconjugate % my_quat)
ma = chrono .ChMatrixDynamicD(4,4)
ma.FillDiag(-2)

mb = chrono .ChMatrixDynamicD(4,4)
mb.FillElem(10)

mc = (ma-mb)*0.1 ; # operator overloading of +,-,* is supported

print (mc);

mr = chrono .ChMatrix33D()
mr.FillDiag(20)

print (mr*my_vectl);

85

The unit POSTPROCESSING :
« Based on ChAsset classes (interface agnostic)

e For batch processing in:
* POVray
* planned: VTK

The unit FEM :

« Will be available in next release of Chrono::Engine

e For dynamics, statics, non-linear statics, etc.

« Compatible with existing constraints, rigid bodies, etc.

« Corotational approach for beams, shells, etc.

86

Finite element types

* Tetahedrons 4 nodes

® Tetahedrons 10 nodes
¢ Hexahedrons 8 nodes
* Hexahedrons 20 nodes
® Springs

* Bars

* 3D beams

planned:

* Shells
* ANCF shells/beams f

L] - -
A

The corotational approach for beam FE

e Locally, a 3D Eulero-Bernoulli beam..

87

The corotational approach for beam FE

« ..mapped to global coordinates:

The corotational approach for beam FE

« Generic sections

e Offsetin shear center
« Offsetin elastic center
e Section rotation

* etc.

88

The corotational approach for beam FE

e Validation
¢ Jeffcott rotor
® Princeton beam
* Lateral buckling

Example: the Princeton beam experiment,
chordal and flapwise deflection

3D corotational tetahedrons and hexahedrons

Some tests for
corotational 3D elements

89

Other types of analysis

» Electrostatics

Example: Chrono::Engine solution for the E field
between a 0kV cylinder and a 23kV plate

Other types of analysis

e Thermal

* steady state

* transient

Example: turbo casing with Dirichlet boundary condition

90

FEM ‘to-do list”

Shell elements

Embed ANCF elements (already tested — ask D.Melanz)
Distributed loads

Non-uniform materials

Collisions

Better import from ABAQUS mesh

Multiphysics — a general framework for PDE

HHT for DVI

Multigrid preconditioner

Postprocessor filter for VTK

Unit_CASCADE

Unit_ POSTPROCESSING
Unit_ MATLAB

Unit_FEM

Unit_GPU

Unit_MPI

91

Virtual Universe PRO

Company: IRAI - France
Contact: stephane.massart.irai@gmail.com

» Simulation of machines in the field of industrial aut omation
e Simulate PLC programs with a numerical model of the real machine
* Interfaces with SolidWorks, the most used 3D CAD by designers of automation machines

« Easy creation of interactive simulations of automat ed plants

Virtual Universe Pro
Company: IRAI - France
Contact: stephane.massart.irai@gmail.com

Simulations creation process without Chrono::Engine :

Import 3D Recreate the Simulation using a

geometries joints between physics engine with

from objects into classic joints (hinge,
Solidworks Virtual prismatic, etc.)

Universe Pro

Simulations creation process with Chrono::Engine :

Import 3D Simulation using

geometries Crono::Engine with
AND « CAD like » joints

Confslraim.s (ChLinkMate classes)
rom

Solidworks

92

Virtual Universe PRO

Company: IRAI - France
Contact: stephane.massart.irai@gmail.com

Virtual Universe PRO

Company: IRAI - France
Contact: stephane.massart.irai@gmail.com

93

Virtual Universe PRO

Company: IRAI - France
Contact: stephane.massart.irai@gmail.com

SimLab Composer 2015

Company: SimLab Soft - France
Contact: Ashraf Sultan asultan@simlab-soft.com

94

Section

Collision detection

« Still one of the hardest problems of computational geometry

e Approaches: find points or areas/volumes of contact between two
shapes

95

Approaches based on areas/volumes fit better in sti
contact models, are more related to physics, but..

approaches based on points are much faster!

ffness-based

Different sub-problems depending on shape’s topological entities:

Note: point-based methods exhibit singularity probl
cases (flat surface vs. flat surface)

* How many points are strictly necessary in the following case?

,ll,

ems in degenerate

96

e Both point-based methods and area/volume methods ca n be used for
deformable models , better if with CCD (see)

Duk-Su Kim, Jae-Pil Heo, Jaehyuk Huh, John Kim, ,and Sung-eui Yoon, 2010

Contact distance and normal between convex shapes

Penetration, d<0 Clearance, d>0

distance envelope

distance

Body A

Contacts are created when objects ‘envelopes’ start to intersect

97

For large N of bodies, it is not practical to check collisions between all
%N2-N pairs naive implementation: O(n?) complexity, too much CPU
time!

Solution: check collision points between pairs of b odies that are ‘near
enough’, using a preliminary trick to discard ‘too far’ pairs.

BROAD PHASE
A ‘broad-phase’ stage is used to roughly identify t he pairs that are near
enough, and to discard the pairs that are too far

NARROW PHASE
A ‘narrow phase’ stage is used to find exact collis ion points (or
volumes/areas) between the pairs that comes fromth e broad-phase.

7

98

Various methods... Most famous:

BROAD PHASES

e 'SAP’

¢ Octree

e ‘DBVT dynamic bounding boxes tree
« Lattice/grid domain decomposition

e Spatial hashing

NARROW PHASES
* Analitic solutions
¢« GJK

‘SAP’ broadphases

e SAP =‘sweep-and-prune '’

e Operates on AABB = A

Axis Aligned Bounding Boxes

+ Basically, sorts X,Y,Z intervals []
of AABB and finds overlappings

¢ Optimization: use quantized AABB

¢ One of the most used
and fastest broadphases!

¢ Not good for deformable
objects!

99

‘Grid / lattice / bins’ broadphases

* Less efficient than SAP
* More ‘false positives'..
* But very simple to implement!

» Data structures are 3D arrays of
pairs.
If only not-empty cells are stored,
few RAM is needed.

* Very good for very large number
of particles

* Problem: what to do if object
size is much larger or much smaller
than the grid cell? suboptimal!

‘Octree’ broadphase
‘Dynamic bounding boxes tree’ broadphase

* Almost as efficient as SAP

* Fit better in case of deformable
bodies

+ Data structures are trees
of pointers

e Variants: also as ‘KD-trees’, etc.

100

Analytical solutions

For limited number of primitives
(es: sphere vs. sphere, sphere vs. plane)

Fastest approach, but not general

Not always possible
(es: analytical solution for ellipsoid vs.
ellipsoid ?)

GJK Gilbert Jordan Keerti algorithm

For all convex shapes
One of the most used

Finds the minimum distance
in few iterations

Works for spheres, ellipsoids,
boxes, polytopes, etc.

Fast, robust

Does not support penetration!

101

GJK Gilbert Johnson Keerthi algorithm

» Trick 1 for supporting penetration:
* Work on ‘shrunk’ objects, reduced by a margin
* Add the margin when creating the contact

Drawback: objects are ‘smoothed’ a bit

» Trick 2 for supporting penetration:

* Use the EPA (Expanding Polytope
Algorithm) for d<0

Drawback: slow method

GJK Gilbert Johnson Keerthi algorithm

What happens in case of concave shapes?

Es. ‘polygon soups’, meshes..

Possible algorithm: decompose concave shapes
in many convex shapes, and process each one with GJK.

102

Note: convex decomposition of concave shapes is not always easy...
Sometimes, results are precise but not efficient, or viceversa.

Note: also spherical decomposition can be used in case of concave shapes, if RAM
is not an issue...

103

For deformable meshes, sometimes the concavity problem is less sev ere
(raycasting methods, CCD methods)

If a shape is decomposed in many sub-shapes, the na rrow-phase can still
hit the O(n 2) problem...

Solution: use a ...

Middle phase

Example:

* Uses BVh trees of
AABB to manage
objects with
thousands of triangles
or sub-convex shapes

104

* The CCD Continuous Collision Detection is used for very fast objects to
avoid the tunneling effect

* Few software has CCD.

- | @ |
- of - o
al

Tunneling!

t=0.02 D Q t=0.02

» Also needed for very thin objects
e Often, itis a GJK algorithm on Minkowski sums of s hapes

Contacts with friction

105

Simulation of the pneumatic-actuated TORX parallel

robot

Simulation of a two stage epicycloidal reducer

106

Simulation of a parallel robot for wood milling (‘t

enoning machine’)

Multibody simulation of a bike on uneven terrain

107

Robotics: simulation of 6-DOF manipulators

Developing fast simulation middleware is difficult. Our guidelines:

* Avoid large classes: divide and specialize as much as possible

* Operator overloading may cause unwanted temporary d ata on stack

« Avoid frequent allocation/deallocation on heap

* Do not waste RAM: exploit cache coherency

* Exploit SIMD processing of new processors
e Use virtual member methods only when needed

* Use templates and metaprogramming

108

Avoid unneeded computations, defer ‘may-be-useful’ d ata updating

Avoid old ‘C-style’ tricks (#defines, varargs, stat ic vars, etc.)

If you often use ‘switch{..}’, most likely you are not a C++ expert...

Do not reinvent the wheel: use STL for containers (but not 100% efficient!)

Prefer constant-time or linear-time algorithms

Avoid exponential or NP-hard algorithms!

Use Hash tables for sublinear key-value searches

Avoid platform dependent code (or segregate it)
Use namespaces to avoid name pollution
Refactor your code once in a while, for readability
Automatic APl documentation via Doxygen
Comment your code

Use profiler, use memory debugger

Pass args by reference or pointer:

Demo_suspension.exe

myfunct(obj& shaft) vs. myfunct(obj shaft)

Demo_oscillator.exe

Demo_racing.exe

109

Section

Examples and applications

The forklift truck simulator benchmark

Up to 1600 forklift trucks simulated simultaneously

Demo_forklift.exe

Demo_forklift100.exe

110

Multibody simulation of the PR43100 racing car (SAE Formula) for
optimal design
- Light alloy suspensions
- Suzuki Racing engine with EFI control
- Honeycomb carbon frame (a first in Italian SAE)
- Optimized push-rod / coilover geometry
- In collaboration with PR43100 team (M.Alfieri)

e Special model based on 13 rigid bodies and 43 constraints
e Car model with 14 DOFs (78 DOFs unconstrained)

Bodies:

e cartruss,

. front left wheel
. front left hub

. front left rocker
. front right wheel
. front right hub

. front right rocker
. rear left wheel

. rear left hub

. rear left rocker

. rear right wheel
. rear right hub

. rear right rocker

111

Simple ‘benchmark’lane
with few obstacles

User can drive with:

e Throttle
. Steer /

* Brake

e Gear

e Clutch
Settings:

e Caster

e Camber

e Toe-in

e Weight

e Wheel friction
* Etc.

Example: push rod and spring forces during a
simulated manouver (a curve over a small bump)

112

Fiorano, 2008: the PR43100 car after the competition

Simulation of high performance engines

collaboration with

F.Pulvirenti et al., Ferrari Auto

Valve train & timing chain
with Adams + FEV

113

Simulation of high performance engines

Engine crank train, TEHD, etc.
with AVL Excite

» wear prediction
 oil temperature
o etc.

collaboration with
F.Pulvirenti et al., Ferrari Auto

The PBR nuclear reactor:

-Fourth generation design

-Inherently safe, by Doppler
broadening of fission cross section

-Helium cooled > 1000 T

-Can crack water (mass production
of hydrogen)

-Continuous cycling of 360’000
graphite spheres in a pebble bed

Research in collaboration with M.Anitescu,
Argonne National Laboratories, USA

Granular
flow

114

The 360’000 spheres have
different radii, % of actinides, etc.

Most important: central spheres should
have less Uranium/Thorium.

Problem of bidisperse granular flow
with dense packing .

One of the most difficult problems
in computational dynamics.

Previous attempts: DEM methods on
supercomputers at Sandia Labs
(but introducing compliance!)

Simulations with DEM. Bazant et al. (MIT and Sandia laboratories).

Our method (2007) can simulate systems
with one million of frictional contacts

- with rigid bodies (no fake springs-dashpots)

- requires one day on a PC where a supercomputer requ

ired a week.

115

Recent test (2008) for reactor
refueling cycle

180’000 Uranium-Graphite
spheres

700’000 contacts on average

More than two millions of

complementarity equations

Two millions of primal variables,
ten millions of dual variables

Example of results

116

Example of results

Tire on a granular soil, with CHRONO::ENGINE

In collaboration with F.Braghin, Politecnico di Milano.

117

The Mars rover on a granular soil, with CHRONO::ENGI

In collaboration with D.Negrut (USA) and SBEL labs [test]

NE

118

Aiming at a real-time simulation of scooping and bu

(work in progress,
low quality video..)

lldozing

Conveyor belts, hoppers, separating devices, ...

119

Section

Future challenges

e GPU, Graphical Processor Units = “stream processors” 1
already used in hi-end gfx boards for pixel
shading in realtime OpenGL 3D views.

Once known as “fragment processors”.

e One GPU = cluster of N “stream processors”

* Recent GPU have floating-point stream processors..
Why not using them for physics?

Can be used for general purpose
parallel computation!
(GP-GPU = General Purpose GPU)

Note: multiple GPU? Yes!
(ex: 4x256=1024 stream processors)

120

Exploit GPU parallel processing

e Current NVIDIA GPU boards (Fermi, Tesla) feature hundreds of multiprocessors
(cores), allowing more than 1 TFlop on a desktop system.

e Anyway, RAM on the GPU is not unlimited: ex. < 1’000'000 bodies on a 2GB GPU.

Performance: > 4 TELOP with recent GPU processors ! !

A single GeForce™ GPU board is as
powerful as four ASCI-RED 1996 supercomputers!

121

“Computers in the future may have only 1,000 vactuives
and perhaps only weigh 1 1/2 tons”

Popular Mechanics, 1949

Example: the M&M benchmark on a TESLA GPU

Rendered by H.Mazhar, 2011,
with Chrono::Engine ‘GPU unit’

122

HPC motivation: many-body dynamics

Examples, with massive number of particles:

* Interaction between buldozzer blade and sand,
debris and pebbles,

» Powder compaction and blending in
pharmaceutical engineering,

A Stable Micro System powder-flow tester
e etc.

>1'000’000 particles
* Not practical on a single CPU,
« better with a cluster of computers

» Possibly, each computer fitted with
one or more GPU boards

A solution for very large multibody problems:

 use a cluster of computing nodes MPI is used to handle the
connected with Infiniband.. node-level parallelism

« ..each computer fitted with one CUDA is used to handle the
or multiple GPU boards GPU-level parallelism

123

Our heterogeneous
cluster (at University
of Wisconsin, Madison
SBEL labs)

* Nodes: 6+1 quad core Intel Xeon 5520 CPUs

e 24 Tesla C1060 cards

e Each Tesla GPU has 240 cores
e Infiniband Switch: QLogic 12200-BS01
e Windows Server 2008 R2 with HPC

* MPICH for message-passing

Total 5,760 cores
Peak power: 21 TFlop

124

Nodes = computing hardware

(CPU cores and/or
GPU thread processors)

Edges = communication

(MPI messages, CUDA
data flow, etc)

The computing topology
must be implemented
via software

Two options shown here

Example of benchmark computed on the EULER cluster

* MPICH-2 message passing interface (MPI) between the nodes
* Simple Cartesian domain decomposition

125

Future goals:

- Comparison with DEM and validation of granular flow s

- Faster method: multigrid (Ruge Stuben / Smooth Aggregation)

- Use Schwarz additive preconditioning / domain decomposition

- Implementation on multiple GPU

- Better HPC implementation on supercomputers, with MPI

- Beyond the 1 Million body barrier: powder/sand simu lation

Thank you for the attention!

For more informations:
tasora@ied.unipr.it
http://www.chronoengine.info
http://ied.unipr.it/tasora

126

Reference textbooks

* Cinematica e dinamica dei sistemi multibody, Eds. Pennestri, Cheli, CEA, 2007 (Vol I)

* Dynamics of Multibody Systems, A.Shabana, Cambridge Press, 2005

* Dynamics of Multibody Systems, E.Robertson, R.Schwertassek, Springer, 1988

* Edward J. Haug: Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods (1989)

* Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, by U. Ascher and
L. Petzold, SIAM, 1998

* Solving Ordinary Differential Equations I: Nonstiff Problems, by E. Hairer, S. Norsett, G. Wanner, 1993

* Solving Ordinary Differential Equations II: Stiff and differential-algebraic Problems (Second Revised Edition) by
E. Hairer and G. Wanner, 2002

* The Finite Element Method, O. C. Zienkiewicz, R.L.Taylor, Butterworth-Heinemann; 6 edition (September 19,
2005) Vol I, 11, 11

* Dispense (A.Tasora)

Reference papers

* Anitescu, M. & Tasora, A.
An iterative approach for cone complementarity problems for nonsmooth dynamics
Computational Optimization and Applications, 2010, 47(2), 207-235

* Tasora, A. & Anitescu, M.
A convex complementarity approach for simulating large granular flows
Journal of Computational and Nonlinear Dynamics, 2010, 5, 1-10

* Tasora, A. & Anitescu, M.
A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics
Computer Methods in Applied Mechanics and Engineering, 2010, doi:10.1016/j.cma.2010.06.030

® Tasora, A.; Negrut, D. & Anitescu, M.
Large-scale parallel multi-body dynamics with frictional contact on the graphical processing unit
Journal of Multi-body Dynamics, 2008, 222, 315-326

* Heyn, T.; Mazhar, H.; Madsen, J.; Tasora, A. & Negrut, D.
GPU-Based Parallel Collision Detection for Granular Flow Dynamics
Proceedings of IDETC 09, San Diego, 2009

127

